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1. Missingness
a. Whatis it?
b. How does it affect us?
c. What can we do?
2. Representation
a. Why do we care?
b. How can we find a good representation?
c. How can we evaluate a representation? (Time Permitting)



What is Missingness?

Time-Varying Lab Measurements
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Lab Value

Missing Data is Rampant in Healthcare Data

Time-Varying Lab Measurements
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Different Kinds of Missingness (Data)

[**2173-2-6%*] 10:02 PM
CHEST (PORTABLE AP) Clip # [**Clip Number (Radiology) 26360

**]
Reason: R/0 infiltrate, check ett position

[**Hospital 4**] MEDICAL CONDITION:

35 year old man with AIDS, MS change, HONK, Fever
REASON FOR THIS EXAMINATION:

R/0 infiltrate, check ett position

FINAL REPORT
INDICATION: Fever s/p intubation.

FINDINGS:

The tip of the ETT is 6 cm above the carina. The feeding tube is noted
coursing below the level of the diaphragm. Slight increased density is
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Why do we care?

e Missing data is inconvenient.
e Missing data is not going away.
e Missing data is informative (or confounding).
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e Missing not at random (MNAR)
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Missing Data Details

Data can be missing according to several regimes:

e Missing completely at random (MCAR)

o The observed pattern of missingness is independent from the observed or missing values.

e Missing at random (MAR)

o The observed pattern of missingness is independent from the missing values (but may depend

e Missing not at random (MNAR

o All bets are off.
\ Healthcare lives here.




Missing Data is Information (Kidney)

Time-Varying Lab Measurements
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Missing Data is Information (Kidney)
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Missing Data is Information (Kidney)

Time-Varying Lab Measurements
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Missing Data is Information (Infection)
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Lab Value

Missing Data is Information (Infection)

Time-Varying Lab Measurements
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Missing Data is Information (Infection)

Time-Varying Lab Measurements
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Missing Data is Confounding
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How do we handle missing data?

RECURRENT NEURAL NETWORKS FOR MULTIVARI-
ATE TIME SERIES WITH MISSING VALUES
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Imputation

1. Statistical Timeseries Forecasting: ARMA/ARIMA/ARIMAX, etc.

Easy Baselines: Constant infilling, Sample & Hold (+ indicators), Interpolation
Traditional Imputation: MICE/3D-MICE, MissForest, Matrix/Tensor Completion
Gaussian Processes

Advanced neural methods (GRU-D, GANSs, etc.)

o H~ b



Imputation
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Figure 2: Example trajectories of six vital signs for a single admission, following imputation using Gaussian processes.
Twelve vital signs are jointly modeled by the GP.

Prasad, Niranjani, et al. "A reinforcement learning approach to weaning of mechanical ventilation in intensive care units."

arXiv preprint arXiv:1704.06300 (2017).



GANSs for Imputation

GAIN: Missing Data Imputation using Generative Adversarial Nets

Jinsung Yoon'" James Jordon’" Mihaela van der Schaar '
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GANSs for Imputation

Monet Z_ Photos

——

Mask Deepfillvl Our Result

Figure 6. Qualitative comparisons with Deepfillvl [15] on the
CelebA-HQ validation sets.

photo —>Monet

Left: Jo, Youngjoo, and Jongyoul Park. "SC-FEGAN: Face Editing Generative Adversarial Network with User's Sketch and Color." arXiv preprint arXiv:1902.06838 (2019).
Middle: Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." Proceedings of the IEEE International Conference on Computer Vision. 2017.
Right: https://thispersondoesnotexist.com/



https://thispersondoesnotexist.com/

GAIN: Generative Adversarial Imputation
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Figure 1. The architecture of GAIN



Imputation Papers

GAIN: https://arxiv.org/pdf/1806.02920.pdf

GRU-D: https://www.nature.com/articles/s41598-018-24271-9

GP Imputation: https://arxiv.org/pdf/1704.06300.pdf
Interpolation-prediction network: https://arxiv.org/pdf/1812.00531.pdf

BN~

Table I: Performance on mortality and length of stay prediction tasks on MIMIC-III. Loss: Cross-
Entropy Loss, MedAE: Median Absolute Error (in days). EV: Explained variance

Model Classification Regression
AUC AUPRC Loss MedAE EV score

Log/LinReg  0.772+0.013  0.303 + 0.018 0.240 £ 0.003 3.528 £ 0.072 0.043 £ 0.012
SVM 0.671 £ 0.005 0.300 4 0.011 0.260 =+ 0.002 3.523 4 0.071 0.042 £ 0.011
AdaBoost 0.829 £ 0.007  0.345 £ 0.007 0.663 £ 0.000 4.517 £+ 0.234 0.100 + 0.012
RF 0.826 = 0.008  0.356 & 0.010 0.315 £ 0.025 3.113 £ 0.125 0.117 £ 0.035
GRU-M 0.831 £ 0.007  0.376 &+ 0.022 0.220 £ 0.004 3.140 £ 0.196 0.131 £ 0.044
GRU-F 0.821 £0.007  0.360 £ 0.013 0.224 £ 0.003 3.064 + 0.247 0.126 + 0.025
GRU-S 0.843 £ 0.007  0.376 £+ 0.014 0.218 £ 0.005 2.900 £ 0.129 0.161 £ 0.025
GRU-D 0.835+0.013  0.359 & 0.025 0.225 £0.009 2.891 +0.103  0.146 £ 0.051

Proposed

0.853 £ 0.007 0.418+0.022 0.210+0.004 2.862+0.166 0.245+0.019



https://arxiv.org/pdf/1806.02920.pdf
https://www.nature.com/articles/s41598-018-24271-9
https://arxiv.org/pdf/1704.06300.pdf
https://arxiv.org/pdf/1812.00531.pdf

Opportunities

1.

Improved imputation methods. How do forecasting, GP, or adversarial
methods compare to GRU-D/interpolation prediction network? Can we
incorporate uncertainty offered by GPs usefully into downstream tasks? Can
we make other models offer uncertainty?

Can we model the decision process by which clinicians choose what to
measure and what to omit? How would this be helpful in downstream tasks?
Can this help account for the MNAR nature of healthcare missingness?

Can we control for the confounding effects of missingness? Can we learn a
model on underlying physiology from retrospective, care-byproduct data?



Representation
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2. Representation
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c. How can we evaluate a representation?



Representation: Why do we care?




Representations define a notion of “similarity”

Closer in “Conceptual Space” Closer in “Pixel Space”



Representations learn a notion of similarity
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Figure 1: Examples of the kernel k;.(z,2) in (1) with ¢ = 5 on three features evaluated on
adult ICU population: Hematocrit, Lactic Acid, and Patient Age

Conroy, Bryan, Minnan Xu-Wilson, and Asif Rahman. "Patient Similarity Using Population Statistics and Multiple Kernel Learning." Machine Learning for Healthcare Conference. 2017.



Representations can stabilize changing data
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Figure 1: Performance of RF classifiers using Item-Id and Clinically Aggregated representa-
tions on mortality (top) and LOS prediction (bottom). Error bars indicate + standard error.

Nestor, Bret, et al. "Rethinking clinical prediction: Why machine learning must consider year of care and feature aggregation." arXiv preprint arXiv:1811.12583 (2018).



Representations can stabilize changing data
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Gong, Jen J., et al. "Predicting clinical outcomes across changing electronic health record systems." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. ACM, 2017.



Representations can join disparate modalities
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Figure 1: The overall experimental pipeline. EA: embedding alignment; Adv: adversarial training.

Hsu, Tzu-Ming Harry, et al. "Unsupervised multimodal representation learning across medical images and reports." arXiv preprint arXiv:1811.08615 (2018).
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Representation: How can we learn?
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Representation: How can we learn?
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“Dog, Husky, Grass, “‘Dog, Newfoundland, “Car, 1969, Buick, GS 400,
Teeth, Mottled, ...” Beach, Shaggy, Black, ..." Hazy, Machine, Shiny ...”
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DeepCluster: Why bother with labels?
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Fig. 1: Illustration of the proposed method: we iteratively cluster deep features
and use the cluster assignments as pseudo-labels to learn the parameters of the
convnet.

Caron, Mathilde, et al. "Deep clustering for unsupervised learning of visual features." Proceedings of the European Conference on Computer Vision (ECCV). 2018.



Representation Learning in Action: Multitask Learning

Multi-task Prediction of Disease Onsets from Longitudinal
Lab Tests

Narges Razavian, Jake Marcus, David Sontag
Courant Instit
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Representation Learning in Action: Clustering
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(a) Scatterplot of the final representations g;’s of GRAM-+

Choi, Edward, et al. "GRAM: graph-based attention model for healthcare representation learning." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 2017.



Representation Learning in Action: Clustering

(a) hd (b) (c) #
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Figure 3: tSNE on context vectors of test dataset from BSS model colored by (a) red: positive examples and
blue: negative examples, (b) average systemic diastolic blood pressure; and (c) average central venous pressure.

Dhamala, Jwala, et al. "Multivariate Time-Series Similarity Assessment via Unsupervised Representation Learning and Stratified Locality Sensitive Hashing: Application to Early Acute Hypotensive
Episode Detection." IEEE Sensors Letters 3.1 (2019): 1-4.



Representation Learning in Action: Anomaly Detection

Training the GAN [ Identifying anomalies
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Fig. 1. Anomaly detection framework. The preprocessing step includes extraction and
flattening of the retinal area, patch extraction and intensity normalization. Generative
adversarial training is performed on healthy data and testing is performed on both,
unseen healthy cases and anomalous data.

Schlegl, Thomas, et al. "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery." International Conference on Information Processing in Medical Imaging.
Springer, Cham, 2017.



Representation Learning in Action: Anomaly Detection
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Fig. 2. (a) Deep convolutional generative adversarial network. (b) t-SNE embedding
of normal (blue) and anomalous (red) images on the feature representation of the last
convolution layer (orange in (a)) of the discriminator.



Key Points for Healthcare

Representations can normalize.

Generalization to unseen tasks is critical (e.g., patient subtyping).
Representations can aid in interpretability.

Representations can span many modalities.



What can you do with a representation?

1.  Confounder Adjustment: https://arxiv.org/pdf/1811.06498.pdf



https://arxiv.org/pdf/1811.06498.pdf

Evaluating a Representation

How can we ensure our representations are generalizable?



Evaluating a Representation

How can we ensure our representations are \generalizable?

l
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Tonewdata To new problems




Generalizable Representations
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Generalizable Representations?

“Happy” “Sad” “Neutralﬂ



Fully Generalizable
Representations are
Not Possible



Data may not be enough

“Likes Swimming” “Hates Swimming”



Data may not be enough

“Likes Swimming” “Hates Swimming” “Why did you try to take
your car swimming???”



Task may be totally out of the box

“Aggressive” “Docile” “Aggressive”



We can still do a lot



True tests of evaluation/Parting thoughts

e Transfer Learning
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True tests of evaluation/Parting thoughts

e Transfer Learning

e Operationalization (leave-one-task-out) possible, but questions remain:

o Test under reduced dataset sizes
o “Current tasks” is not a random sample of “possible tasks”

e How do we evaluate multi-dimensional notions of similarity?
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Thank you for your attention

e Links to all papers mentioned available with slides
e Getin touch: mmd@mit.edu
e Questions?



mailto:mmd@mit.edu




Representation Learning in the Literature

Representation Learning: A Review and New
Perspectives

Yoshua Bengio', Aaron Courville, and Pascal Vincent!
Department of computer science and operations research, U. Montreal
1 also, Canadian Institute for Advanced Research (CIFAR)
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Why do we care?

e Missing data is inconvenient.
e Missing data is not going away.
e Missing data is informative (or confounding).



